Abstract

The thermal decomposition of the monomer and dimer of lignin has been simulated by a quantum molecular dynamics (DMD) method. In the calculation, we controlled the total energy of the system using Nóse-Hoover thermostats in the total energy range of 0.69–0.95 eV, and the sampling position data with a time step of 0.5 fs were carried out up to 3000 (1.5 ps) or 5000 (2.5 ps) steps in ab initio and semiempirical MO methods, respectively. We obtained the thermally decomposed fragments with positive, neutral and negative charges from SCF MO calculation at each data of the last MD step, and simulated the fragment distribution of the monomer and dimer lignins from the last step in 30–40 runs. Simulated mass numbers of positively and negatively charged fragments for lignin monomer and dimer showed considerably good accordance with the experimental results in TOF-SIMS observed by Saito and co-workers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.