Abstract

To optimize the quantum efficiency (QE) and short-circuit current density (JSC) of silicon thin-film solar cells, one has to study the behavior of sunlight in these solar cells. Simulations are an adequate and economic method to analyze the optical properties of light caused by absorption and reflection. To this end a simulation tool is developed to take several demands into account. These include the analysis of perpendicular and oblique incident waves under E-, H- and circularly polarized light. Furthermore, the topology of the nanotextured interfaces influences the efficiency and therefore also the short-circuit current density. It is well known that a rough transparent conductive oxide (TCO) layer increases the efficiency of solar cells. Therefore, it is indispensable that various roughness profiles at the interfaces of the solar cell layers can be modeled in such a way that atomic force microscope (AFM) scan data can be integrated. Numerical calculations of Maxwell's equations based on the finite integration technique (FIT) and Finite Difference Time Domain (FDTD) method are necessary to incorporate all these requirements. The simulations are performed in parallel on high performance computers (HPC) to meet the large computational requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.