Abstract
The present study aims at contributing to the current state-of-the art of activity-based travel demand modelling by presenting a framework to simulate sequential data. To this end, the suitability of a reinforcement learning approach to reproduce sequential data is explored. Additionally, as traditional reinforcement learning techniques are not capable of learning efficiently in large state and action spaces with respect to memory and computational time requirements on the one hand, and of generalizing based on infrequent visits of all state-action pairs on the other hand, the reinforcement learning technique as used in most applications, is enhanced by means of regression tree function approximation.Three reinforcement learning algorithms are implemented to validate their applicability: the traditional Q-learning and Q-learning with bucket-brigade updating are tested against the improved reinforcement learning approach with a CART function approximator. These methods are applied on data of 26 diary days. The results are promising and show that the proposed techniques offer great opportunity of simulating sequential data. Moreover, the reinforcement learning approach improved by introducing a regression tree function approximator learns a more optimal solution much faster than the two traditional Q-learning approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.