Abstract

Scattered radiation, which occurs when using a C-arm for intraoperative radiography, can be better understood through interactive visualization. We developed a virtual reality (VR) approach for the simulation of scattered radiation (SSR) as part of a C-arm training system. In VR, it is important to avoid cyber sickness, which is often caused by increased latency between head motion and image presentation inside the head-mounted display. As the latency requirement interferes with the computational complexity of the SSR, the goal has been to maintain a low latency during the simultaneous computation of the SSR on moderate-cost consumer hardware. For use with a VR C-arm simulator, a CUDA-based Monte Carlo SSR has been improved to utilize GPU resources unused by the VR image generation. Resulting SSR data are visualized through volume rendering with pseudo-colored scattered radiation superimposed onto the virtual operating room. The resulting interactive VR-SSR environment was evaluated with operating room personnel (ORP) and surgeons using questionnaires. Depending on the imaged body part and computation parameters, the required computation time to complete one SSR run was between 1.6 and 4.2s (ankle) and between 7.9 and 14.9s (thigh), and VR frame times from 11 to 12ms (95th percentile). The system was evaluated with ORP (n = 46) and surgeons (n = 25). The median of professional C-arm experience was 5 (range 1 to 34) years (ORP) and 12.5 (range 2 to 48) years (surgeons), respectively. The demonstrated prototype was found useful by 78% of ORP and 88% of the surgeons. On a Likert scale, more than 90% of both groups "agreed fully" that the presented way of visualizing SSR in VR helps understanding intraoperative exposure to scattered radiation. Leveraging off-the-shelf computer equipment, the feasibility of SSR and VR for interactive training has been demonstrated. Evaluation participants showed a high interest for the presented approach. Feedback suggests that the visualization experienced by the users helps understanding radiation hazards in the operating room.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.