Abstract

The honing process produces surface liners with specific functional properties. Engine performances and life expectancy are directly impacted by the quality of honed surface. The form quality, the roughness and the surface appearance manufactured by honing determine the friction of the piston in the liner. The process is however mechanically complex and the selection of the process parameters is currently based on empirical methods. The aim of this paper is thus to develop a macroscopic simulation environment which will help end-users during this setting-up stage. The development of this virtual tool is based on a space-time discretization and a macroscopic cutting model taking into account local contacts between the workpiece and the abrasive stones. The space-time discretization allows representing the machine environment including the tool, the workpiece and the machine kinematics. The cutting model allows converting kinematics and abrasive contacts in dynamic data and material removal rate by calculation. The cutting model is initially adjusted based on simple experiments. The stock removal equation is then extrapolated to the whole range of stone cutting conditions. This approximation allows simulating the real process and a whole honing cycle. Results are validated by comparison with industrial context experiments. The simulation of the whole honing cycle allows predicting the form quality, one of the roughness criteria and the surface appearance. Moreover, simulation results are represented by means of maps that allow looking at quality criteria for each point of the surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.