Abstract
A method for simulation of the roller compaction process using a laboratory scale compaction simulator was developed. The simulation was evaluated using microcrystalline cellulose as model material and ribbon solid fraction and tensile strength as key ribbon properties. When compacted to the same solid fractions, real and simulated ribbons exhibited similar compression behavior and equivalent mechanical properties (tensile strengths). Thus, simulated and real ribbons are expected to result in equivalent granulations. Although the simulation cannot account for some roller compaction aspects (non-homogeneous ribbon density and material bypass) it enables prediction of the effects that critical parameters such as roll speed, pressure and radius have on the properties of ribbons using a fraction of material required by conventional roller compaction equipment. Furthermore, constant ribbon solid fraction and/or tensile strength may be utilized as scale up and transfer factors for the roller compaction process. The improved material efficiency and product transfer methods could enable formulation of tablet dosage forms earlier in drug product development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.