Abstract
Steady-state one-dimensional flows of five-component air behind a normal shock wave are considered with a one-temperature model. A mathematical model is formulated to describe the relaxation of a five-component air mixture with a one-temperature non-equilibrium approximation. A numerical study of non-equilibrium flows of a reacting five-component air mixture behind shock waves at different heights and velocities of free flow is performed. The contribution of different types of reactions to the overall relaxation of the mixture is discussed, and the distributions of macro-parameters of the flow behind the shock wave front are calculated. The lengths of the relaxation zones behind the shock wave front are compared at different initial conditions. Calculations are performed for the standard model of atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.