Abstract

A computer code has been developed to simulate the production of heavy element compound nucleus recoils and their trajectories through gas-filled magnetic separators. The simulation is carried out in three steps: positions and trajectories of heavy element recoils in the target layer, propagation through remaining target material, and trajectories through the gas-filled separator. Separators with quite different magnetic configurations are modeled: the Berkeley gas-filled separator (BGS) and two magnetic configurations for the TransActinide separator and chemistry apparatus (TASCA). While computing trajectories through the gas-filled separator, special attention is paid to the charge exchange/equilibration and scattering in the gas. New features of these simulations include mixed He/H2/N2 gas operation and a gas density (pressure) effect. Numerical procedures used in the simulations are explained in detail. Results of the simulations are presented, showing the gas mixtures/pressures that result in the highest efficiency for collecting compound nucleus recoils at the focal plane of the gas-filled separator. Comparison between simulation and experimental results are presented for average recoil ion charge in various gases, focal plane image size, and magnetic rigidity dispersion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call