Abstract

The reactive transport of U(VI) in a shallow alluvial aquifer beneath a former U(VI) mill located near Naturita, CO, was simulated using a surface complexation model (SCM) to describe U(VI) adsorption. The groundwater had variable U(VI) concentrations (0.01–20 μM), variable alkalinity (2.5–18 meq/L), and a nearly constant pH equal to 7.1. U(VI) KD values decreased with increasing U(VI) and alkalinity, and these parameters were more important than sediment variability in controlling KD values. Reactive transport simulations were fit to the observed U(VI) and alkalinity by varying the concentration of U(VI) and alkalinity in recharge at the source area. Simulated KD values varied temporally and spatially because of the differential transport of U(VI) and alkalinity and the nonlinearity of U(VI) adsorption. The model also simulated the observed U(VI) tailing, which would not be expected from a constant KD model. The simulated U(VI) concentrations were sensitive to the recharge flux because of the increased flux of U(VI) to the aquifer. The geochemical behavior of U(VI) was most sensitive to the alkalinity and was relatively insensitive to pH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.