Abstract
In the present work, we propose a new variant of the model of the composite synthesis under surface heating. We believe that the formation of the composition occurs at the level of reaction cell. The diffusion-controlled process of reduction of one material by another from an oxide is described in the framework of the problem with moving boundaries. It is assumed that the formation of the matrix composition is carried out by the diffusion mechanism. From the position of interfaces, we find the relative volume fractions of oxide phases and the fraction of volume occupied by the matrix. The averaging method of the analysis results at the reaction cell level makes it possible to use these data at the macroscopic level. Volume fractions of phases and average matrix composition (obtained by averaging over the area occupied by the matrix) provide values reflecting the composition of the composite at the macro level. The problem is solved numerically in dimensionless formulation. Dimensionless complexes of physical quantities are distinguished. The estimation of these parameters is performed. The conditions of correctness of the proposed approach are established from comparison of temporal and spatial scales of thermal and diffusion phenomena. A numerical algorithm for the joint solution of macro- and mesolevel problems has been developed. The proposed algorithm makes possible the investigation of the dynamics of composition changes at all points. The model is supplemented by the calculation of stresses and strains from the data on composition and temperature changes in reaction cells. Averaged values of stresses are transferred to macro level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.