Abstract

We study the randomness necessary for the simulation of a random process with given distributions, on terms of the finite-precision resolvability of the process. Finite-precision resolvability is defined as the minimal random-bit rate required by the simulator as a function of the accuracy with which the distributions are replicated. The accuracy is quantified by means of various measures: variational distance, divergence, Orstein (1973), Prohorov (1956) and related measures of distance between the distributions of random process. In the case of Ornstein, Prohorov and other distances of the Kantorovich-Vasershtein type, we show that the finite-precision resolvability is equal to the rate-distortion function with a fidelity criterion derived from the accuracy measure. This connection leads to new results on nonstationary rate-distortion theory. In the case of variational distance, the resolvability of stationary ergodic processes is shown to equal entropy rate regardless of the allowed accuracy. In the case of normalized divergence, explicit expressions for finite-precision resolvability are obtained in many cases of interest; and connections with data compression with minimum probability of block error are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.