Abstract

We present 2-D hydrodynamic simulation of rotating galactic winds driven by radiation. We study the structure and dynamics of the cool and/or warm component($T \simeq 10^4$ K) which is mixed with dust. We have taken into account the total gravity of a galactic system that consists of a disc, a bulge and a dark matter halo. We find that the combined effect of gravity and radiation pressure from a realistic disc drives the gas away to a distance of $\sim 5$ kpc in $\sim 37$ Myr for typical galactic parameters. The outflow speed increases rapidly with the disc Eddington parameter $\Gamma_0(=\kappa I/(2 c G \Sigma)$) for $\Gamma_0 \ge 1.5$. We find that the rotation speed of the outflowing gas is $\lesssim 100$ km s$^{-1}$. The wind is confined in a cone which mostly consist of low angular momentum gas lifted from the central region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.