Abstract

We introduce a framework for simulating quantum optics by decomposing the system into a finite rank (number of terms) superposition of coherent states. This allows us to define a resource theory, where linear optical operations are “free” (i.e., do not increase the rank), and the simulation complexity for an m-mode system scales quadratically in m, in stark contrast to the Hilbert space dimension. We outline this approach explicitly in the Fock basis, relevant in particular for Boson sampling, where the simulation time (space) complexity for computing output amplitudes, to arbitrary accuracy, scales as O(m2 2 n ) [O(m2 n )] for n photons distributed among m modes. We additionally demonstrate that linear optical simulations with the n photons initially in the same mode scales efficiently, as O(m2 n). This paradigm provides a practical notion of “non-classicality,” i.e., the classical resources required for simulation. Moreover, by making connections to the stellar rank formalism, we show this comes from two independent contributions, the number of single-photon additions and the amount of squeezing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.