Abstract

A continuum damage mechanics based model for composite materials (CODAM), which has been implemented as a user material model in an explicit finite element code (LS-DYNA), is used to capture the complete tensile and compressive response of a braided composite material. Model parameters are related to experimentally observed behaviour to ensure a physical basis to the model and a crack band scaling approach is used to minimize mesh sensitivity (or lack of objectivity) of the numerical results. The predictive capability of the model is validated against the results from dynamic tube crush experiments. The damage propagation, failure morphology and energy absorption predictions correlate well with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.