Abstract

The pressure-transmitting behavior and pressure distribution of a pyrophyllite cell in a cubic-anvil large volume high-pressure apparatus is investigated by finite-element analysis (FEA). The mechanical equations describing pyrophyllite under high pressure are given, which are composed of the Drucker–Prager criterion and a linear equation of state. The related material parameters such as cohesive strength, angle of internal friction etc. are experimentally measured. The FEA simulation includes the non-uniformity deviatoric stress caused by plastic deformation and the isotropy hydrostatic pressure of the pyrophyllite cell caused by volume compression. The results demonstrate that, in such a pyrophyllite cell, almost 90{%} of the pressure is isotropy hydrostatic pressure, and the pressure gradient mainly arise from non-uniform deviatoric stresses. Simulated data are displayed using the contour and the path plots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.