Abstract

AbstractFerroelectric materials exhibit a spontaneous polarization, which can be reversed by an applied electric field of sufficient magnitude. The resulting nonlinearities are expressed by characteristic dielectric and butterfly hysteresis loops. These effects are correlated to the structure of the crystal and especially to the axis of spontaneous polarization in case of single crystals. We start with a representative meso scale, where the domains consist of unit cells with equal spontaneous polarization. Each domain is modeled within a coordinate invariant formulation for an assumed transversely isotropic material as presented in [10], in this context see also [8]. In this investigation we obtain the macroscopic polycrystalline quantities via a simple homogenization procedure, where discrete orientation distribution functions are used to approximate the different domains. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.