Abstract

In this work we present the analysis of the dynamic of the expansion of Al Plasma produced by Nd:YAG laser (1064 nm, 500mJ, 9 ms, 10 Hz) in vacuum. To study the Coulomb interaction between the particles of the initial states of the plasma expansion, we use the one dimensional Particle-in-Cell method (PIC) and finite difference method. We considered an ideal model, that is, we assume that the plasma is in a local thermal equilibrium, the ablated particles have a fixed temperature and a constant evaporation flux (J) from the aluminium surface. To obtain more accurate results we use high computing exploiting the parallelization of this kind of algorithms. The mean velocity and particles densities are determined for different times of the expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.