Abstract

Based on the phase-field model for deformations in bulk metallic glasses (BMG), shear banding in BMG with micro- and nano-sized pores is simulated and the thermo-plastic deformation behaviors are investigated. In the simulations, we use the free-volume concentration w 0 at the pore surface as a measure of the roughness of the pore. We obtain the critical w 0 when shear bands are initiated from the pore surface under different loading conditions. The effect of local heating due to shear banding on the critical w 0 is also quantitatively determined. By considering the heat conduction around pores, shear banding around vacuum pores or pores filled with helium gas are found to be quite different. It is shown that the nano-sized pores act as sinks or sources for shear bands when the pore surfaces are tailored. The simulations indicate that engineering BMG with nano-sized pores is effective in improving their ductility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.