Abstract

Analysis of the experimental profiles of the plasma density and pressure in the T-10 tokamak shows that in the plasma core they are close to the corresponding canonical profiles. This allows one to construct an expression for the particle flux in terms of the canonical profile model. T-10 experiments performed with ohmic discharges have revealed transitions from improved to low particle confinement, similar to the effect of the density pump-out from the central part of the plasma upon switching-on of the electron cyclotron resonance heating (ECRH). It is shown that such a change in the particle confinement is associated with the deviation of the radial pressure profile from the canonical one. A nonlinear model of particle transport in discharges with density variations that allows for the transition effects is proposed. The plasma density evolution is numerically simulated for a number of ohmic and ECRH T-10 discharges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call