Abstract

Abstract Due to changes in the kinematic constraints, many mechanical systems are described by discontinuous equations of motion. This paper addresses those changes in the kinematic constraints which are caused by planar bodies contacting and separating. A strategy to automatically predict and detect the kinematic constraint changes, which are functions of the system dynamics, is presented in Part I. The strategy employs the concepts of point to line contact kinematic constraints, force closure, and ray firing together with the information provided by the rigid bodies’ boundary descriptions, state variables, and reaction forces to characterize the kinematic constraint changes. Since the strategy automatically predicts and detects constraint changes, it is capable of simulating mechanical systems with unpredictable or unforeseen changes in topology. Part II presents the implementation of the characterizations into a simulation strategy and presents examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.