Abstract
The spectra of two powerful flares with approximately the same intensities in the optical region but with different spectral features and power in other regions are studied. One of them is the unique flare which occurred on October 28, 2003, importance X17.2/4B, ranking third in magnitude among the recorded flares. Another occurred on September 1, 1990, 3B importance. The flares vary in the Balmer decrement. The flare of October 28, 2003, has a ratio of I(Hβ)/I(Hα) = 1.47. This is the largest value for solar flares ever observed. The flares also differ in magnitude of the D Na I lines emission: the emission of the flare of October 28, 2003, is substantially larger than that of the other flare. The chromosphere models of the flares are computed using the observed profiles of Balmer lines and D Na I lines. The satisfactory agreement of the calculated and observed profiles is obtained for the two-component models in which a hot component occupies 6% of the area. The hot component of the chromosphere model is characterized with the dense condensation available in the upper layers. For the flare of October 28, 2003, this condensation is located deeper and its substance concentration is greater than that for another flare. The Hα line intensity for the model hot component alone is approximately 30 and the continuous spectrum intensity is approximately 3% of the undisturbed level. The photosphere model is computed using the observed profiles of photosphere lines for the flare of October 28, 2003. It is found that very broad profiles of individual sigma-components of the Fe I λ 525.0 nm line may be only explained by the presence of magnetic fields having different directions. A great difference is detected between values of the magnetic field strength obtained in the splitting of sigma-components and those provided by simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.