Abstract
At the pore scale level, 2-D porous medium structures of porous media with different porosities (isotropic) and the same porosities (anisotropic) were constructed using quartet structure generation set. A random porous cavity was selected and combined with the lattice Boltzmann model to describe the gas-liquid phase transition process. Bubble generation, growth, mutual fusion, and collision as well as rebound process in porous media framework were investigated by simulating the phase transition phenomenon in porous media. Calculation results show that in three different heat loads, the maximum relative errors between the qualities of gas phase and liquid phase and theoretical solution of gas phase were 0.09%, 0.19%, and 0.32%, respectively, whereas the values for liquid phase were 0.11%, 0.38%, and 1.49%, respectively. Simulation results coincide with the theoretical solution perfectly, verifying the accuracy and feasibility of the model for random porous structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.