Abstract
In the current study, the settling, interaction, drafting, kissing, and tumbling of two identical and non-identical circular particles were simulated in a two-dimensional box in shear-thinning, Newtonian, and shear-thickening fluids by using the combined lattice Boltzmann-smoothed profile methods. Furthermore, the drag coefficient of one particle settling for different power-law indexes and Archimedes numbers was calculated. Also, the effect of the diameter ratio of the two particle pairs was considered during settling. The developed method was validated by simulating the settling of one particle and two identical particles in a Newtonian fluid. To consider two non-identical particles, two cases were examined. In Case A, the larger particle was above the smaller one and in the Case B, the smaller particle was above the larger one. The results showed that the two non-identical particles were separated more easily than the identical ones. In the settling of two particles under the same Archimedes number, the drafting and kissing time considerably increased by changing the non-Newtonian fluid behavior from a shear-thinning one to a shear-thickening one. Also, when the larger particle was above the smaller one, the time duration of the kissing stage increased with the decrease in the diameter ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.