Abstract
Using the dynamic Monte Carlo code, ACAT-DIFFUSE, the oxide sputtering and the SIMS depth profiling of a multilayered thin film sample was investigated. The ACAT-DIFFUSE code is based on the binary collision approximation, taking into account the generation of interstitial atoms and vacancies, annihilation of vacancies, diffusion and the relaxation of target materials according to the packing condition which include not only beam and target particles but also defects (interstitial atoms and vacancies). The observed shift of the delta layer peak to the surface in SIMS depth profiles can be reproduced by the ACAT-DIFFUSE simulation. It is found that this peak shift is mainly due to the relaxation or expansion caused by defects produced behind the delta layer, not due to preferential sputtering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.