Abstract
A chiral structure is formed by the optical radiation force induced by a circularly polarized light that has spin angular momentum; chiral structures are expected to be used for light control devices and molecular chirality discrimination devices. In this paper, we clarify the relationship between the differences in the distributions of the optical radiation force and the possibility of formation of chiral structures. We first simulate the optical radiation force distribution in the case of a Gaussian beam that successfully forms a chiral structure. Given a vector {varvec{r}} with a centre of the light spot mathrm{O} and polar coordinates R(left|{varvec{r}}right|, theta ), and an optical radiation force vector {varvec{F}} at R, the angle {theta }^{mathrm{^{prime}}}=mathrm{angle }({varvec{r}}, {varvec{F}}) and left|{varvec{F}}right| must be constant with respect to the declination angle theta for a chiral structure to form. These conditions are fulfilled in the case of a 6-beam interference pattern, but not in the case of a 4-beam interference pattern, which is consistent with the result that no chiral structure is formed in the latter case. The equations derived for simulation of optical radiation force distribution can be used for any optical intensity distribution, and will be of great help in the research of any dielectrics deformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.