Abstract
The opposed-jets configuration is very used in industrial systems. The actual practical applications use clean fuels which in stead of classical hydrocarbons. The present work is a numerical simulation of opposed diffusion jets using FLUENT6.3.26. We have compared different turbulence models and combustion models and mechanisms to find which gives the best predictions for this type of flows. We have used methane and hydrogen fuels because they are considered as clean fuels. The comparison between k-ε, k-omega and RSM turbulent models shows that both of k-ε and RSM gives good results. The use of k-ε is more practical because it requires less long time to be implied. The comparison between the combustion models shows that EDC gives more realistic results than eddy dissipation and Finite rate models. In addition, the detailed chemical mechanisms are more adequate to this model. For both methane and hydrogen flames, the detailed mechanisms gives good results and temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Letters of Chemistry, Physics and Astronomy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.