Abstract

The embodiment of the NOx selective catalytic reduction (SCR) functionality in a diesel particulate filter (DPF), so‐called SCR‐on‐Filter (SCRoF), is investigated through numerical modeling with SCR kinetics corresponding to Cu‐Chabazite and Fe‐ZSM5 catalysts. The results of the simulations of the SCR activity, performed in the absence and presence of soot, indicate that the presence of soot negligibly affects the NOx conversion efficiency, given the slow dynamics of passive regeneration. Conversely, the reduction in cake thickness by soot passive oxidation is significantly different in the absence of SCR activity (uncatalyzed DPF) compared to that in its presence (SCRoF). In fact, in the SCRoF only 60–80% of the original soot consumption obtained in the absence of SCR reaction over 1 h can be achieved. Individual Cu‐Chabazite and Fe‐ZSM5 catalysts, as well as in‐series layers of the two catalysts, are investigated to devise the widest temperature window for SCRoF. © 2016 American Institute of Chemical Engineers AIChE J, 63: 238–248, 2017

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.