Abstract

This paper deals with the nonlinear propagation of ultrasonic pulses in a homogeneous medium in which a bubbly layer is placed. The medium we use is air bubbles in water. During the propagation of a pulse, the interaction of the acoustic field and bubbles vibration is assured via the coupling of a nonlinear differential system. The solution is tracked in the time domain by means of the SNOW-BL code. In the biphasic fluid, attenuation and nonlinear effects are due to the bubbles only. The study addresses to two applications: filter effects of the layer and nonlinear characterization of liquid–gas mixtures. We study the filter effects (screen effect) a layer has for some frequency ranges present in the initial ultrasonic pulses, in the linear and nonlinear regimes, i.e. for low and high pressure amplitude. One (or several) simple layer is contemplated in numerical experiments with different bubble densities, bubble sizes, layer thicknesses, for different kinds of pulse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call