Abstract
AbstractFerroelectric and piezoelectric materials are becoming a very significant part of smart materials that are used widely as actuators, sensors and most common applications such as vibration control, precision positioning, precision cutting and microelectromechanical systems (MEMS). Piezoceramic materials show nonlinear characteristics when they are under high electromechanical loading. In this study, nonlinear behaviour of tetragonal perovskite type piezoceramic materials is simulated using micromechanical model. In the simulations uni‐axial loading is applied. The calculations which are based on a linear constitutive model, nonlinear domain switching model and a model of probability to switch are performed at each grain. The different domain switching effects (900 or 1800 domain switching for tetragonal perovskite structure) due to energy differences, different probability functions, different statistical random generators and material parameters are analyzed. Finally, simulation results are compared with the data of experiments are giving in literature. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.