Abstract

Addressing needs of contemporary nonlinear femtosecond optical spectroscopy, we have developed a fully quantum, numerically accurate wave function-based approach for the calculation of third-order spectroscopic signals of polyatomic molecules and molecular aggregates at finite temperature. The systems are described by multimode nonadiabatic vibronic-coupling Hamiltonians, in which diagonal terms are treated in harmonic approximation, while off-diagonal interstate couplings are assumed to be coordinate independent. The approach is based on the Thermo Field Dynamics (TFD) representation of quantum mechanics and tensor-train (TT) machinery for efficient numerical simulation of quantum evolution of systems with many degrees of freedom. The developed TFD-TT approach is applied to the calculation of time- and frequency-resolved fluorescence spectra of the Fenna-Matthews-Olson (FMO) antenna complex at room temperature taking into account finite time-frequency resolution in fluorescence detection, orientational averaging, and static disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.