Abstract

In this work, a model has been developed to determine thermal and microstructural events during non-isothermal annealing of rolled carbon steels. In the first place, the process of cold rolling under both symmetrical and asymmetrical conditions was mathematically modeled employing an elastic–plastic finite element formulation to define the distribution of plastic strain and internal stored energy. In the next step, two-dimensional model based on cellular automata was generated to assess softening kinetics in annealing treatment. At the same time, a thermal model based on Galerkin-finite element analysis was coupled with the microstructural model to consider temperature variations during heat treatment. The impact of different parameters such as heating rate, annealing temperature, and initial microstructures were all taken into account. To validate the employed algorithm, the predictions were compared with the experimental results and a reasonable agreement was found. Accordingly, the simulation results can be employed for designing a proper mechanical–thermal treatment to achieve the desired microstructure as well as mechanical properties under practical processing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.