Abstract

Studying experimental data obtained at ITEP [1] on neutron production in interactions of protons with various nuclei in the energy range from 747 MeV up to 8.1 GeV, we have found that slow neutron spectra have scaling and asymptotic properties [2]. The spectra weakly depend on the collision energy at momenta of projectile protons larger than 5 – 6 GeV/c. These properties are taken into account in the Geant4 Fritiof (FTF) model. The improved FTF model describes as well as the Geant4 Bertini model the experimental data on neutron production by 1.2 GeV and 1.6 GeV protons on targets (Fe, Pb) [3] and by 3.0 GeV protons on various targets (Al, Fe, Pb) [4]. For neutron production in antiproton-nucleus interactions, it is demonstrated that the FTF results are in a satisfactory agreement with experimental data of the LEAR collaboration [5]. The FTF model gives promising results for neutron production in nucleus - nucleus interactions at projectile energy 1 – 2 GeV per nucleon [6]. The observed properties allow one to predict neutron yields in the nucleus-nucleus interactions at high and very high energies. Predictions for the NICA/MPD experiment at JINR are presented.

Highlights

  • For Beam-Energy Scan program running at RHIC (BES), and new experiments at future accelerator complexes – such as FAIR at GSI and NICA at JINR – it is very important to know the yield of neutrons for detector design, estimations of radiation doses, creation ofZero Degree and hadron calorimeters

  • Model describes as well as the Geant4 Bertini model the experimental data on neutron production by 1.2 GeV and 1.6 GeV protons on targets (Fe, Pb) [3] and by 3.0 GeV protons on various targets (Al, Fe, Pb) [4]

  • For neutron production in antiproton-nucleus interactions, it is demonstrated that the FTF results are in a satisfactory agreement with experimental data of the LEAR collaboration [5]

Read more

Summary

Introduction

For Beam-Energy Scan program running at RHIC (BES), and new experiments at future accelerator complexes – such as FAIR at GSI and NICA at JINR – it is very important to know the yield of neutrons for detector design, estimations of radiation doses, creation ofZero Degree and hadron calorimeters. For neutron production in antiproton-nucleus interactions, it is demonstrated that the FTF results are in a satisfactory agreement with experimental data of the LEAR collaboration [5]. The FTF model gives promising results for neutron production in nucleus - nucleus interactions at projectile energy 1 – 2 GeV per nucleon [6]. We apply Geant4 Bertini and Binary Cascade models for calculations and comparisons with the FTF results and experimental data.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.