Abstract

AbstractDirect information about the soil structure can be obtained with X‐ray computed microtomography, and the imaged macropore networks can be used as geometries in the lattice Boltzmann flow simulations. This method has not been widely applied for near‐saturated flows due to methodological issues related to diffuse‐interface two‐phase flow simulations in samples with limited resolution. Here, a simple pore‐scale lattice Boltzmann approach to simulate steady‐state water flow in partially saturated soil macropore networks that circumvents these problems is presented. The actual simulation is preceded by the determination of water–air distribution, for example, by using morphological operations. Flow through the water‐filled part of the pore space is done by using no‐slip conditions at water–solid boundaries and slip conditions at water–air interfaces. The method was tested by simulating film flow over a solid surface, and the numerical results are shown to agree with the analytical expression available for this flow geometry. The method is further tested, and its use is demonstrated with real tomographic reconstructions of clay soil samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call