Abstract

Studies on the entanglement of n-qubit quantum systems have attracted a lot of interest during recent years. Despite the central role of entanglement in quantum information theory, however, there are still a number of open problems in the theoretical characterization of entangled systems that make symbolic and numerical simulation on n-qubit quantum registers indispensable for present-day research. To facilitate the investigation of the separability and entanglement properties of n-qubit quantum registers, here we present a revised version of the Feynman program in the framework of the computer algebra system Maple. In addition to all previous capabilities of this Maple code for defining and manipulating quantum registers, the program now provides various tools which are necessary for the qualitative and quantitative analysis of entanglement in n-qubit quantum registers. A simple access, in particular, is given to several algebraic separability criteria as well as a number of entanglement measures and related quantities. As in the previous version, symbolic and numeric computations are equally supported. Program summary Title of program: Feynman Catalogue identifier:ADWE_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADWE_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed: All computers with a license of the computer algebra system Maple [Maple is a registered trademark of Waterloo Maple Inc.] Operating systems under which the program has been tested: Linux, MS Windows XP Programming language used: Maple 10 Typical time and memory requirements:Most commands acting on quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 with ⩾ 2 GHz or equivalent) and 5–20 MB of memory. However, storage and time requirements critically depend on the number of qubits, n, in the quantum registers due to the exponential increase of the associated Hilbert space. No. of lines in distributed program, including test data, etc.:3107 No. of bytes in distributed program, including test data, etc.:13 859 Distribution format:tar.gz Reasons for new version:The first program version established the data structures and commands which are needed to build and manipulate quantum registers. Since the (evolution of) entanglement is a central aspect in quantum information processing the current version adds the capability to analyze separability and entanglement of quantum registers by implementing algebraic separability criteria and entanglement measures and related quantities. Does this version supersede the previous version: Yes Nature of the physical problem: Entanglement has been identified as an essential resource in virtually all aspects of quantum information theory. Therefore, the detection and quantification of entanglement is a necessary prerequisite for many applications, such as quantum computation, communications or quantum cryptography. Up to the present, however, the multipartite entanglement of n-qubit systems has remained largely unexplored owing to the exponential growth of complexity with the number of qubits involved. Method of solution: Using the computer algebra system Maple, a set of procedures has been developed which supports the definition and manipulation of n-qubit quantum registers and quantum logic gates [T. Radtke, S. Fritzsche, Comput. Phys. Comm. 173 (2005) 91]. The provided hierarchy of commands can be used interactively in order to simulate the behavior of n-qubit quantum systems (by applying a number of unitary or non-unitary operations) and to analyze their separability and entanglement properties. Restrictions onto the complexity of the problem: The present version of the program facilitates the setup and the manipulation of quantum registers by means of (predefined) quantum logic gates; it now also provides the tools for performing a symbolic and/or numeric analysis of the entanglement for the quantum states of such registers. Owing to the rapid increase in the computational complexity of multi-qubit systems, however, the time and memory requirements often grow rapidly, especially for symbolic computations. This increase of complexity limits the application of the program to about 6 or 7 qubits on a standard single processor (Pentium 4 with ⩾ 2 GHz or equivalent) machine with ⩽ 1 GB of memory. Unusual features of the program: The Feynman program has been designed within the framework of Maple for interactive (symbolic or numerical) simulations on n-qubit quantum registers with no other restriction than given by the memory and processor resources of the computer. Whenever possible, both representations of quantum registers in terms of their state vectors and/or density matrices are equally supported by the program. Apart from simulating quantum gates and quantum operations, the program now facilitates also investigations on the separability and the entanglement properties of quantum registers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call