Abstract

In multilateration (MLAT) systems, the traditional Chan algorithm applies the theory of time-difference-of-arrival (TDOA) to solve the target position of the mathematical model. By introducing intermediate variables, the algorithm adopts a two-step weighted least-squares solution. The introduction of intermediate variables results in the target position equation producing a fuzzy solution, this reduces positioning accuracy. The conjugate gradient algorithm (CGA) is one of the most useful methods for solving large linear equations, it avoids solving the inverse of the matrix, whilst it 'speeds up' the solution of the target position. A four stations multi-point-positioning system mathematical model is established, and a new fusion algorithm Chan-CGA is applied to the MLAT system. Finally, the fusion algorithm is evaluated by simulation and compared with the Chan-Taylor algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.