Abstract

The metallurgical industry is in second place among all other industries in terms of emissions into the atmosphere, and air pollution is the main cause of environmental problems arising from the activities of metallurgical enterprises. In some existing systems for localization, in the trapping and removal of dust emissions from tapholes and cast-iron gutters of foundries, air flow parameters may differ from the optimal ones for solving aspiration problems. The largest emissions are observed in the area of the taphole (40–60%) and from the ladles during their filling (35–50%). In this paper, it is proposed to consider a variant of the blast furnace aspiration system with the simultaneous supply of a dust–gas–air mixture from two-side smoke exhausters and two upper hoods with two simultaneously operating tapholes, that is, when the blast furnace operates in the maximum emissions mode. This article proposes an assessment of the effectiveness of the modernized blast furnace aspiration system using computer CFD modeling, where its main parameters are given. It is shown that the efficiency of dust collection in the proposed system is more than 90%, and the speed of the gas–dust mixture is no lower than 20 m/s, which prevents gravitational settling on the walls. The distribution fields of temperatures and velocities are obtained for further engineering analysis and the possible improvement of aspiration systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call