Abstract

AbstractA phase‐field model is applied to the simulation of microsegregation and microstructure formation during the solidification of multicomponent alloys. The results of the one‐dimensional numerical simulations show good agreement with those from the Clyne–Kurz equation. Phase‐field simulations of non‐isothermal dendrite growth are examined. Two‐dimensional computation results exhibit different dendrites in multicomponent alloys for different solute concentrations. Changes in carbon concentration appear to affect dendrite morphology. This is due to a larger concentration and a lower equilibrium partition coefficient for carbon. On the other hand, changes in phosphorus concentration affect the dendrites and interface velocity in multicomponent alloys during solidification when phosphorus content is increased from 10−3 mol% P. With additional manganese, the solidification kinetics slow down; dendrite morphology, however, is not affected. The potential of the phase‐field model for applications pertaining to solidification has been demonstrated through the simulations herein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.