Abstract

In this study, a steady-state analytical model for heat and mass transfer in a 2D micro-reactor coated with a Nickel-based catalyst is developed to investigate microscale hydrogen production. Appropriate correlations for each species’ net rate of production or consumption, mass diffusivity, and the heat of reactions are developed using a detailed reaction mechanism of methane steam reforming. The energy and species conservation equations are then solved for the reactive mixture coupled with the wall energy equation. Finally, the response surface methodology (RSM) is employed to study the effects of channel height, inlet velocity and temperature, wall thickness and conductivity, and external heat flux on CH4 conversion. It is found that the inlet gas temperature, among different parameters, has the most influence on the overall performance of the microchannel hydrogen production. Also, the maximum necessary heat of reforming reaction increases by 84% and 26% if the CH4 conversion changes from 50% to 60% and 60% to 70%, respectively. The developed analytical simulation can be a useful tool for designing experiments in micro-scale hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.