Abstract

We present a numerical method to solve the equations for low-Reynolds-number (Stokes) flow in porous media. The method is based on the lattice-Boltzmann approach, but utilizes a direct solution of time-independent equations, rather than the usual temporal evolution to steady state. Its computational efficiency is 1-2 orders of magnitude greater than the conventional lattice-Boltzmann method. The convergence of the permeability of random arrays of spheres has been analyzed as a function of mesh resolution at several different porosities. For sufficiently large spheres, we have found that the convergence is quadratic in the mesh resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.