Abstract

In this study, a previously developed co-simulation method has been expanded to also simulate the dynamic behaviour of sealing gap regions in hydraulic percussion units. This approach is based on a 1D system model representing the fluid components and a 3D finite element model representing the structural parts of a hydraulic hammer. The sealing gap is a fundamental feature of a percussion unit, where the reciprocating motion of the piston is generated by the valve mechanism of the sealing gap. When the gap is closed it will prevent fluid flow between regions of different pressure levels. However, a small leakage flow through the gap will always occur which size depends on the clearance and the position of the piston. The method proposed here will take the structural motion and deformation into consideration when calculating the leakage flow. The deformed state of the structure is approximated by a cylindrical surface, in a least square manner, and communicated through the co-simulation interface to the fluid simulation module, and then used when calculating the leakage flow. This method aims at a more accurate simulation of the leakage flow that will not only yield a more realistic description of the mechanism on the local level, but also a more accurate estimation of global parameters such as overall performance and efficiency. The results indicate that the simulated leakage flow will decrease when dynamic gaps are used in comparison to static gaps, which is a consequence of the deformed structure that will generate smaller clearances. The leakage flow for the dynamic gaps will even be lower than for the static perfectly concentric case, mainly due to the reduction of clearances. The results also indicate that the dynamic eccentricity does not have a major influence on the leakage flow. The outcome from this study highlights the potentials of the described co-simulation approach for analysing the dynamics of the sealing gaps in a hydraulic percussion unit (i.e. gap heights, eccentricity ratios, etc.) including the evaluation of leakage flows and its impact on the overall performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.