Abstract

Using a hybrid thermal Lattice Boltzmann method, the dynamics of laser-produced single cavitation bubbles in bulk liquid and the bubble collapse process near a solid boundary are numerically investigated. The simulated bubble evolutions satisfyingly agree with the theoretical calculations and the previous experimental results. The simulated bubble radius changes in bulk liquid are in good accordance with the calculations of a revised 2-D Rayleigh–Plesset equation that incorporates an extra thermal effect term. The maximum bubble radius is linearly proportional to the bubble collapse time and the input laser energy, which is consistent with the experimental data and bubble dynamics theory. Processes of a single cavitation bubble collapse at various distances from a solid boundary are analyzed in detail. The velocity vectors, density, pressure, and temperature fields are presented. The retarding effect of a solid boundary is successfully reproduced in the LBM simulations and leads to bubble elongation, the formation of micro-jet, bubble toroidal deformation, and the attraction of the bubble to the boundary during the collapse phase. The attraction effect, maximum jet velocity, and maximum pressure at the solid boundary all increase with reduced non-dimensional distance. A critical non-dimensional distance of 2.2 is validated by both the simulation and experiment. The hybrid thermal Lattice Boltzmann method is a reliable tool to investigate non-isothermal cavitation bubble dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.