Abstract

The purpose of the present paper is to extend the use of a novel meshless Local Radial Basis Function Collocation Method (LRBFCM) for solving the two-dimensional, steady, laminar flow over a backward facing step under the influence of the Lorentz force. The incompressible Navier–Stokes equations are under the influence of predetermined static magnetic field numerically solved on a non-uniform node arrangement. In the numerical procedure, local collocation and Multiquadric Radial Basis Functions (MQ RBF) are used on five-nodded subdomains. The coupling between the pressure and the velocity is made by using Fractional Step Method (FSM). The considered problem is calculated for Reynolds numbers (Re) ranging from 300 to 800, Hartman numbers (Ha) ranging from 0 to 100, and for low magnetic Rem number. The numerical results demonstrate excellent agreement with previously published data, obtained with the classical numerical methods, such as Finite Volume Method (FVM) and Finite Element Method (FEM). Simplicity of the numerical implementation, accuracy and the absence of the polygonalisation are the main advantages of the LRBFCM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call