Abstract

In order to present the microstructures of dynamic recrystallization (DRX) in different deformation zones of hot extruded NiTi shape memory alloy (SMA) pipe coupling, a simulation approach combining finite element method (FEM) with cellular automaton (CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established. The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse. Large plastic deformation may result in fine recrystallized grains, whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation, even if the final plastic strain is very large. As a consequence, the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX, including the morphology, the mean grain size and the recrystallization fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.