Abstract

An algorithm is developed for simulation of phase transitions in the solid state. The algorithm permits the derivation of the corresponding kinetic curves for different initial conditions (quantity and configuration of new-phase nuclei, distance between the closest nuclei). The results of simulation are analyzed by means of the Johnson–Mehl–Avrami–Kolmogorov equation and the logistical function for determining the corresponding coefficients. Analogies are established between the results of simulation and the experimental kinetics of isothermal transformation of austenite in alloy steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.