Abstract

Multilayer dielectric (MLD) gratings used in ultrahigh-intensity laser systems often exhibit a laser-induced damage performance below that of their constituent materials. Reduced performance may arise from fabrication- and/or design-related issues. Finite element models were developed to simulate stress waves in MLD grating structures generated by laser-induced damage events. These models specifically investigate the influence of geometric and material parameters on how stress waves can lead to degradation of material structural integrity that can have adverse effects on its optical performance under subsequent laser irradiation: closer impedance matching of the layer materials reduces maximum interface stresses by ~20% to 30%; increasing sole thickness from 50 nm to 500 nm reduces maximum interface stresses by ~50%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call