Abstract

Assessing the intake of radionuclides after an accident in a nuclear power plant or after the intentional release of radionuclides in public places allows dose calculations and triage actions to be carried out for members of the public and for emergency response teams. Gamma emitters in the lung, thyroid or the whole body may be detected and quantified by making dose rate measurements at the surface of the internally contaminated person. In an accident scenario, quick measurements made with readily available portable equipment are a key factor for success. In this paper, the Monte Carlo program Visual Monte Carlo (VMC) and MCNPx code are used in conjunction with voxel phantoms to calculate the dose rate at the surface of a contaminated person due to internally deposited radionuclides. A whole body contamination with 137Cs and a thyroid contamination with 131I were simulated and the calibration factors in kBq per µSv/h were calculated. The calculated calibration factors were compared with real data obtained from the Goiania accident in the case of 137Cs and the Chernobyl accident in terms of the 131I. The close comparison of the calculated and real measurements indicates that the method may be applied to other radionuclides. Minimum detectable activities are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call