Abstract
The addition of hollow glass microsphere into composites is a method to improve mechanical properties. However, the interfacial debonding of hollow microsphere inevitably causes a decrease in the mechanical properties of the material, which ultimately leads to the failure of the composites. In the numerical simulation of such hollow particle-reinforced composites, the ordinary displacement finite element requires a large number of meshes, which undoubtedly greatly increases the computational cost. In this paper, a new VCFEM is proposed to solve this problem by establishing a two-dimensional Voronoi cell finite element model, deriving the residual energy generalized function of hollow particle-reinforced composites, and calculating the interface debonding. The simulation results are compared with the commercial software MARC, ABAQUS to verify the effectiveness of this VCFEM. The results show that this VCFEM greatly improves the computational efficiency while ensuring the accuracy. Based on this model, this paper also investigates the effect of the generation of interfacial debonding on the overall structure and the effect of different wall thickness of hollow particles on the damage of element debonding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.