Abstract

Abstract In the interdiffusion of two solid-state materials, if the diffusion coefficients of the two materials are not the same, the interface of the two materials will shift to the material with the lower diffusion coefficient. This effect is known as the Kirkendall effect. The Kirkendall effect leads to Kirkendall porosity. The pores act as sinks for vacancies and become voids. In this paper, the movement of the Kirkendall plane at interdiffusion is simulated based on cellular automata. The number of vacancies, the critical radius of voids nucleation and the nucleation rate are analysed. The vacancies diffusion, vacancies aggregation and voids growth are also simulated based on cellular automata.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.