Abstract

In this study, we present a self-consistent model for picosecond laser induced electron emission from silicon. Surface electron emission due to a pulsed laser excitation originates from thermionic and photoelectric effects, both of which depend on the surface electron temperature and incident laser pulse intensity. By numerically solving a set of coupled transport equations, time dependent surface electron temperature as well as lattice temperature was determined. The electron emission rates and electron yields due to photoelectric and thermionic effects have been studied for varying pulse width and pulse intensity. For picosecond pulses at 1064 nm, the dominant emission mechanism was found to be photoelectric emission for pulse fluences below the melting threshold. In addition, a comparison between electron emission due to the picosecond infrared pulse and a picosecond 532 nm pulse was also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.