Abstract

With the increasing attention to comfortable living environment and energy efficiency, indoor thermal energy management has become an important task in architectural design. Reasonable heat dissipation system can not only improve indoor comfort, but also reduce energy consumption. The aim of this study is to optimize the layout of indoor heat radiator by genetic algorithm and visualization design of indoor environment combined with light sensor, so as to improve the efficiency and comfort of space heat utilization. The indoor heat dissipation model is established, and the changes of indoor temperature and light are monitored by light sensor in real time. Then genetic algorithm is used to optimize the layout of the radiator, considering the heat distribution and light intensity at different locations. The impact of different design schemes on indoor environment was evaluated through simulation experiments. After many iterations, the optimized radiator layout shows a more uniform heat distribution and significantly improved indoor comfort, and the data from the light sensor provides real-time feedback on the environmental layout, making the design solution more realistic. Therefore, the optimization method based on genetic algorithm can effectively improve the layout efficiency of indoor heat radiator, combined with the application of light sensor, can achieve a more scientific indoor environment design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.